Cash Demand Forecasting for Atm Using Neural Networks and Support Vector Regression Algorithms

نویسندگان

  • Rimvydas Simutis
  • Darius Dilijonas
  • Lidija Bastina
چکیده

In this paper two different methods are used to forecast the daily cash demand for automatic teller machines (ATM). The first method is based on flexible artificial neural network (ANN). The generalization properties of this ANN were improved using special adaptive regularization term. The second forecasting method employs the support vector regression (SPR) algorithm. Performed simulation studies and experimental tests showed tolerable forecasting capacities using the both proposed methods. Despite the today's overenthusiastic beliefs about the capabilities of SPR, our investigation showed however that for this application slightly better result can be achieved using forecasting method based on flexible ANN. At this stage the forecasting schema based on flexible ANN is in the implementing phase for intelligent cash management in ATM network.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Optimization of Forecasting ATMs Cash Demand of Iran Banking Network Using LSTM Deep Recursive Neural Network

One of the problems of the banking system is cash demand forecasting for ATMs (Automated Teller Machine). The correct prediction can lead to the profitability of the banking system for the following reasons and it will satisfy the customers of this banking system. Accuracy in this prediction are the main goal of this research. If an ATM faces a shortage of cash, it will face the decline of bank...

متن کامل

Investigation of CI forecasting algorithms for short-time cash demand in ATM network

Good ATM network cash management requires accurate information of future cash demand. In this paper we compare computational intelligence models when performing cash flow forecasting for one day. Adaptive input selection and model parameter identification are used with every forecasting model in order to perform more flexible comparison. Experimental data contains 200 ATMs from real ATM network...

متن کامل

Modeling and forecasting US presidential election using learning algorithms

The primary objective of this research is to obtain an accurate forecasting model for the US presidential election. To identify a reliable model, artificial neural networks (ANN) and support vector regression (SVR) models are compared based on some specified performance measures. Moreover, six independent variables such as GDP, unemployment rate, the president’s approval rate, and others are co...

متن کامل

Different Methods of Long-Term Electric Load Demand Forecasting a Comprehensive Review

Long-term demand forecasting presents the first step in planning and developing future generation, transmission and distribution facilities. One of the primary tasks of an electric utility accurately predicts load demand requirements at all times, especially for long-term. Based on the outcome of such forecasts, utilities coordinate their resources to meet the forecasted demand using a least-co...

متن کامل

Machine learning algorithms in air quality modeling

Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008